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Examples of Machine Learning

Machine Learning is ubiquitous in everyday life

• Home Assistants:

• Translation:

• Recommendation:

• Object Detection:



intelligent D igital Systems Lab

Overview of Machine Learning

A blackbox model which can perform a given task

Training:

• Using a set of example real-world inputs to learn the parameters 
for the blackbox model

Inference:

• Running this blackbox model with the learned parameters on new 
real-world inputs

CAT
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Evolution of ML model sizes

Architecture Year Application # Parameters 
(million)

AlexNet 2012 CV 60

Seq2seq 2014 NLP 320

GoogLeNet 2014 CV 64

Transformer 2017 NLP 213

AmoebaNet 2019 CV 557

GPT-3 2020 NLP 175000

• CV = Computer Vision

• NLP = Natural Language Processing

What does it take to perform training and inference?
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ML Model Lifecycle

Datacenter Edge-device

Untrained 

model

Training 

Process

Trained 

model

Query

Inference

How is a machine learning model deployed?
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Hardware for Machine Learning

What are the desirable properties for hardware to run machine 
learning workloads?

• Handle matrix multiplication efficiently

• Ability to store millions of parameters
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Hardware for Machine Learning - Datacenter

Facility Components:
• PSU

• Heating Control

Communication:
• Routers

• Switches

Computing nodes:
• ML Accelerator

• Memory
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Quantifying the Carbon Footprint – Power Usage Effectiveness

How can we summarise the power consumed by a datacenter?

• IT Energy Consumption = Power consumed by the machine learning hardware

• Datacenter Overhead = Power consumed by other parts of the datacenter 
(Heating and Cooling, Power supply inefficienies, etc …)

Describes efficiency of a datacenter
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Quantifying the Carbon Footprint – Greenhouse Gasses

CO2e : Carbon Dioxide Equivalent

• Measure of total greenhouse gas emissions from a process

• For datacenters, can describe the tonne of CO2 per MWh

• The US average value for CO2e is 0.71 tonnes of CO2 per MWh

How can we relate energy consumption to green house gas emissions?



intelligent D igital Systems Lab

Quantifying the Carbon Footprint – Total Footprint

What is the total carbon footprint for a Machine Learning Application?

• One-time cost of training

• Continued cost of inference throughout lifetime

• The datacenter charateristics are important (PUE and CO2e)
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Data Center Environmental Impact
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Supporting infrastructure has significant impact on data 
center construction

• Supporting infrastructure 
originally made up 2/3 of floor 
space

• Centers host for users:
• Computational servers

• Data storage units

• Network servers

• Supporting infrastructure

Figure: Data Center Construction Breakdown [17]
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3 features differentiate hyperscale data centers

Hardware to support 
simplified power 
distribution [24]

• 48V instead of 12V 
motherboards to 
reduce "stepping 
down" voltage

Improved Virtualization 
[25]

• Includes predictive 
scheduling

• Workload reshuffling

• Hardware reallocation

Advanced cooling 
systems [24]

• Kyoto Cooling (indirect 
air)

• Membrane-based 
evaporative cooling 
(Facebook)

• Water to the chip 
(Google)

• Rear-door chilling units 
(LinkedIn).
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Data Center utilization is growing faster than power consumption

Data Center Energy Breakdown in 2014 [16]
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Increase in forecasted energy consumption driven by data 
centers and networks

Figure: Data Center energy forecasts [19]

Figure: ICT Proportion of Global Electricity Demand [19]
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Perspective | Relative energy consumption of data centers 
and the ICT industry

Equivalent energy consumption 

of global music downloads [21]

Annual energy consumption of data 

centers and ICT industry [19]
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Large relative environmental impact of data centers and ICT 
industry

Global emissions from ICT are 
equivalent to those of entire aviation 
industry

• Accounts for 2.3% of global greenhouse gas 
emissions [23]

• 25% directly from Data Centers [15]

2040 prediction: 14% of 

world emissions will be 

produced by storing 

digital data: [20]
• Same proportion as US 

today

• Data Centers are fastest 

growing emitter in ICT
Data centers:
3.15x10^7 tons of 
CO2e emission [26]

Bitcoin:

5.8x10^7 tons of 
CO2e emission [1]

>
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Primary causes of data center inefficiencies

• Cloud computing has 20-40% CPU utilization [22]
• Idle compute causes large inefficiency

• Warm climate based data centers [19]

• Power surging [19]
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Primary approaches to reducing carbon footprint

• Systems used which include the type of hardware, cooling 
systems, layout etc.

• Location

• Carbon Offsetting

• Google specific – Georgia does not have a supply of Carbon Free 
Energy

• Relocate the server to Oklahoma where Google can average 95.6% net 
CFE (Location)

• Purchase the equivalent MWh of CFE in Montana (Carbon Offsets)
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The Carbon Footprint of Training
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Carbon Footprint of Training - Components

• Network Architecture Search (NAS)
• Generate model architecture by framing search space of possible network 

architectures as a learning problem and optimizing for target metric

• Prototyping
• Hyperparameter optimization

• Final Training Run
• Single training run resulting in final model
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Carbon Footprint of Training – Final Training Run

• Most commonly measured and reported

Net CO2e TPUv3 V100 GPU

Meena T5 Gshard-600B Switch 
Transformer

GPT-3

Metric Tons 96 47 59 4 552

SF-NY Roundtrips 0.53 0.26 0.33 0.022 3.07
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Carbon Footprint of Training – NAS

• Commonly presumed to be energy inefficient 

• Using NAS to develop the Evolved Transformer [5] resulted in a model with 37% fewer 
parameters and 25% less energy than a vanilla Transformer [1]

• These transformers were used to train the Meena DNN [6] and the energy savings 
obtained from using a NAS developed model was approx. 15x larger than the cost of 
NAS [1]
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Carbon Footprint of Training – Prototyping

• Currently very difficult to measure or estimate

• Power consumption varies with
• Device used

• Time of day

• Location of server

• Architecture of network

• Size of dataset
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Carbon Footprint of Training – Measuring

• Current approaches to estimate include:

• Peak performance per Watt

• Peak is higher than measured by on average 1.6x for TPUs and 3.5x for GPUs

• Modelling 

• ML Emissions [7] and Green Algorithms [8] differ from the measured energy consumption by 
on average 0.92x and 1.48x respectively

• New approaches [9],[10] aim to facilitate easy measurement instead of 
estimation so that accurate reporting of carbon footprint to training and 
deploying a neural network can be performed
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Environmental Impact of Inference
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Environmental Impact of Inference

• What is inference?
• When the ML model is being run to perform the given task

• Why is the impact of inference important?
• Amazon estimates that 90% of the ML cloud compute is used for inference [1]

• ML will become even more prevalent in the future

• How significant is the impact of inference on the environment?
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Case Study – Google Translate

• Employs the GNMT machine learning model

• Used by roughly 500 million people worldwide [11]

• Handles around 100 billion words a day

• TPU accelerators are used in Google Datacenters for processing 
ML workloads
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Case Study – Google Translate
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Inference Power Model

How can we estimate the power consumption of Google Translate?

• Ptotal = Total power consumed for inference

• NTPU = Total number of accelerators used

• Trequests = queries per second for the application

• TTPU = queries a second a single accelerator can handle

• Pbusy = The power consumed by an accelerator when processing a query

• Pidle = The power consumed by an accelerator when idle

• PUE = Power Usage Effectiveness
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Case Study – Google Translate

• Google handles roughly 1.2 million 
translation queries a second [11]

• A single TPU die can handle 175 queries a 
second [3]

• A 4-die TPU card draws 384W when busy 
and 290W when idle [12]

• Google has an average PUE of 1.1 across 
all their datacenters [13]

• How many accelerators?

Parameter Value

Trequests (queries/s) 1,200,000

TTPU (queries/s) 175

Pbusy (W) 96

Pidle (W) 72.5

PUE 1.1
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Case Study – Google Translate

Number of TPUs Efficiency (%) Total Power (KW) Energy per Year (MWh) CO2e (t)

7000 98 660 5780 4100

100000 7 8100 71000 50000

Let's look at an ideal system and a more typical redundant system:

CO2e (t) Efficient Redundant

Round Trip NY-SF 1 Passenger 0.9 x4555 x56000

Average Human per Year 5 x820 x10000

Lifetime of Average Car 57 x72 x880

To put this into perspective, let's compare the following:
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Inference Power Model - Limitations

What are the limitations of this model?

• Communications overhead is ignored

• Assumption that all TPUs have the same PUE and CO2e

• More fine-grain understanding of the relationship between workload and 

power consumption
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Environmental Impact of Inference – what can be done

What can be done to reduce the environmental impact of inference?

• Transparency from machine learning companies

• More efficient hardware for running the models

• More efficient models to run

• Reducing the usage of Machine Learning hardware all together
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Link to Our Work
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Link to our own work – Low Power Accelerator Design for Inference

• Focus on reducing power consumption in accelerators

• Designed power modelling tools for CNN Accelerators

• Researching ways to address memory power consumption (roughly 30% of the 
system) for CNN Accelerators

• Designing a highly customisable CNN Accelerator architecture for FPGAs
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Link to our own work – Edge device training

• [2] mention that a significant energy cost of training is the retraining of models 
after deployment in order to improve their performance 

• Exploration of low-cost training of CNNs on edge devices 

• Development of tools to easily program and deploy a variety of architectures on low 
powered FPGA devices

• Estimating network activations to finetune just the FC layer
• Results suggest that applying the proposed methodology on a CPU can achieve a 10x speedup compared to 

retraining the entire network on a GPU with little difference in achieved accuracy
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Conclusion – Is it worth it? 

Datacenter Environmental Impact:

• General trend of more efficient datacenters

• Choice in datacenter and location important

Carbon Footprint of Training:

• More concrete methods of measuring impact needed

• Where do the true costs lie?

Environmental Impact of Inference:

• The most significant contributor

• Not addressed in Industry
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Index of Terms

PUE Power Usage Effectiveness. Ratio of total facility 

power to power delivered.

Performance per Watt Number of operations done per second, per watt.

CO2e Carbon Dioxide equivalent. This is the measure for 

the impact power usage has on the environment
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Discussion Points

• What can academics do to ensure they are not having a negative 
impact on the planet?

• Ways to hold companies more accountable for the cost of training?

• Ways to hold companies more accountable for the cost of inference?

• Is the impact on the environment justified?

• What is it that we are in the dark about in terms of environmental 
impact of datacenters?

• Moving to mobile/edge devices, is this the trend that might reduce 
power consumption of ICT energy effect?

• What are alternatives for ML computing?
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