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ABSTRACT
As the need for the deployment of Deep Learning applications on

edge-based devices becomes ever increasingly prominent, power

consumption starts to become a limiting factor on the performance

that can be achieved by the computational platforms. A significant

source of power consumption for these edge-based machine learn-

ing accelerators is off-chip memory transactions. In the case of

Convolutional Neural Network (CNN) workloads, a predominant

workload in deep learning applications, those memory transactions

are typically attributed to the store and recall of feature-maps. There

is therefore a need to explicitly reduce the power dissipation of

these transactions whilst minimising any overheads needed to do so.

In this work, a Differential Encoding of Feature-maps (DEF) scheme

is proposed, which aims at minimising activity on the memory

data bus, specifically for CNN workloads. The coding scheme uses

domain-specific knowledge, exploiting statistics of feature-maps

alongside knowledge of the data types commonly used in machine

learning accelerators as a means of reducing power consumption.

DEF is able to out-perform recent state-of-the-art coding schemes,

with significantly less overhead, achieving up to 50% reduction of

activity across a number of modern CNNs.

KEYWORDS
Power Optimisation, Activity Coding, Neural Networks

1 INTRODUCTION
Power-efficiency is a sought after characteristic in many CNN ac-

celerators. As the use-case for these accelerators moves closer to

edge-based applications, the constraints of the platform they are

deployed on become more and more prominent. In many applica-

tions the power-budget of the system is the main limiting-factor,

which often places a bottleneck on the computational performance

of the CNN accelerator. Previous work identified that accessing

data stored in DRAM is a significant source of power consumption

for many embedded systems [5, 9]. The power consumption of the

memory subsystem is due to both the DRAM chips themselves as

well as due to the bus-lines connecting off-chip memory to the

device. These bus-lines have high capacitance compared to on-chip

routing, and therefore consume a considerable proportion of the

total dynamic power of the system. Dynamic power consumption

for a bus is modelled by Equation (1):

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑛 ·𝑉 2

𝑑𝑑
· 𝑓𝑐𝑙𝑘 ·𝐶 · 𝑎 (1)

where 𝑛 is the number of bus lines, 𝑉𝑑𝑑 is the driving voltage, 𝑓𝑐𝑙𝑘
is the clock frequency of the bus, 𝐶 is the capacitance of the bus

lines and 𝑎 the the activity on the bus. The values 𝑛, 𝑉𝑑𝑑 , 𝑓𝑐𝑙𝑘 and

𝐶 are system parameters that are fixed for a specific platform. The

activity, 𝑎, however is highly dependant on the workload and how

it is encoded for transmission.

As the activity is dependant on the memory transactions, a com-

mon technique to address high activity is to introduce a coding

scheme for reducing the bus activity, both for address lines and data

lines. Existing coding schemes introduce either spatial [8, 17] or
temporal [16] redundancy in order to carry information about the

coding scheme. Temporal redundancy introduces extra words into

the data stream, impacting performance. Spatial redundancy intro-

duces extra bus-lines, impacting the available resources. Moreover,

coding schemes can be categorised as either adaptive [8, 16, 17]
or static [11]. Static coding schemes utilise fixed properties of the

bus activity to design their coding scheme, resulting in approaches

with the need of limited resources, whereas adaptive schemes use

online methods.

The coding scheme proposed in this work is a static scheme that

utilises knowledge of the CNN workload in order to efficiently re-

duce the activity along the off-chip memory bus. By using statistical

knowledge of the feature-maps transferred between the memory

and the accelerator during execution of a CNNworkload, the coding

scheme is able to achieve improved reduction in activity compared

to recent state-of-the-art coding schemes. This is achieved without

introducing any temporal or spatial redundancy.

The paper is structured as follows: Section 2 covers background

work on CNN accelerators and their workloads. Related state-of-the-

art coding schemes are also introduced. Section 3 introduces DEF
1
,

the proposed coding scheme. Finally, the proposed coding scheme is

evaluated against other coding schemes and results obtained from

prototyping on an FPGA device are reported in Section 4.

2 BACKGROUND & RELATEDWORK
2.1 Activity Minimisation Schemes
There have been many coding schemes proposed in order to reduce

activity on off-chip busses. The main activity reduction schemes of

interest are Bus-Invert (BI) coding [17], Probability-Based Mapping

(PBM) [7, 11], Adaptive Bus Encoding (ABE) [16] and Adaptive

Word Reordering (AWR) [8]. BI minimises the maximum number

of transitions. The inverse of the incoming signal is sent if the

hamming distance with the previous signal is greater than
𝑛
2
. An

extra bus line is needed to indicate this transition. PBM combines

an entropy encoder with a bitwise decorrelator[18]. This ensures

that the most frequent words create the least transitions. ABE

finds clusters of highly correlated bus-lines within a window and

performs an XOR operation with the basis line and the cluster.

An extra bus line and word are required to propagate the basis

1
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information over the channel. AWR reorders the incoming words

such that there are fewer transitions between neighbouring words,

using a nearest neighbour algorithm. Extra bus-lines are required

to recover the original ordering.

2.2 CNN Accelerators
A number of edge-based accelerators have been proposed for CNNs

[21]. Typically, these accelerators are either streaming-architectures

[1, 20] or single computation engines [2, 13]. The constraints of

edge-devices has made it difficult to faithfully implement CNN net-

works on them due to the large number of parameters and costly

implementation of floating point arithmetic. As such, research has

been focused at reducing the size and computational complexity

of CNN networks. Commonly used techniques are based on the

quantisation of feature-maps/weights as well as in the pruning of

the network’s parameters [4, 22]. Quantization schemes are em-

ployed to reduce the number of bits used to represent weights and

feature-maps, as well as reducing the computational cost of the

CNN, with fixed-point becoming the de-facto representation in

edge-tailored CNN accelerators [1, 2, 20]. The bit-width of these

representations generally range between 1 to 16 bits.

Moreover, a number of proposed CNN accelerators identify off-

chip memory as a significant source of power dissipation, with

representative examples being the EYERISS [2] and eCNN [6] ac-

celerators. The EYERISS accelerator employs Run Length Encoding

(RLE) between off-chip memory and the accelerator hardware. It

makes use of the abundance of zeros found in feature-maps, allow-

ing for significant compression to be achieved, reducing the number

of memory transactions. In eCNN, a Huffman coding scheme for pa-

rameters is introduced in order to reduce the memory transactions.

Additionally, power-awareness has been explored in the context

of CNN accelerators in [9], where power consumption was mod-

elled for the fpgaConvNet [20] accelerator, which also encapsulated

power consumption of off-chip memory. By using this model, a

design space exploration tool was able to discover power-efficient

designs for given performance targets.

The proposed methodology either departs from the problem

setting of the above approaches (in the case of activity minimi-

sation schemes) or provides improved trade-offs between power-

consumption reduction and necessary resources for its implemen-

tation. This is achieved by providing a domain-specific activity

reduction approach, capitalising on the statistical properties and

access patterns that are commonly seen in CNN workloads.

3 PROPOSED CODING SCHEME
The proposed coding scheme aims at reducing the dynamic power

consumption by reducing the activity along the data bus connected

to off-chip memory. The average activity, denoted by 𝑎, is given in

Equation (2) for a bus width of 𝑛 bits and transmitting a stream, 𝒙 ,
of𝑚 words.

𝑎(𝒙) = 1

𝑚 · 𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=0

𝑥𝑖, 𝑗 ⊕ 𝑥𝑖−1, 𝑗 (2)

where 𝑥𝑖, 𝑗 is the 𝑗𝑡ℎ bit of the 𝑖𝑡ℎ word in the stream.

Following a similar approach to many state-of-the art coding

schemes [7, 11, 12], a decorrelator is introduced into the encoding

path of the scheme. The decorrelating function is described in

Equation (3) for the 𝑖𝑡ℎ word in the stream.

𝑑 (𝑥𝑖 ) = 𝑥𝑖 ⊕ 𝑑 (𝑥𝑖−1) (3)

Introducing the decorrelator into the encoding path means that

the activity of a decorrelated stream can now be viewed as is de-

scribed in Equation (4).

𝑎(𝒙) = 𝑎(𝑑 (𝒙)) = 1

𝑚 · 𝑛

𝑚∑
𝑖=0

𝑛∑
𝑗=0

𝑥𝑖, 𝑗 (4)

This view of activity reveals a far simpler objective of the coding

scheme: rather than minimising the number of transitions between

two consecutive bits, the popcount (number of "1" bits) per word

needs to be minimised.

To achieve a reduction in total "1" bits, first the representation

of data being sent along the bus is considered. As quantization

of feature-maps is becoming increasingly more common for CNN

accelerators, the proposed scheme makes the assumption that the

data transmitted across the bus is an 𝑛-bit fixed point integer. Twos

complement (TC) is a common integer representation, however the

redundancy of repeated sign bits adds significantly to the activity.

Therefore a sign-magnitude (SM) integer representation is adopted

[10]. It is worth noting that the full range of the TC value can be

preserved in the SM representation, by keeping the value of −2
𝑛−1

the same in both representations. With the SM representation, the

popcount for each integer value is distributed more symmetrically

around 0.

This point is illustrated in Figure 1, where the symmetry can

clearly be seen.

Figure 1: Popcount for all 16-bit signed integer values for
both TC and SM representation.

Using this representation allows for certain properties regarding

the activity to be guaranteed, namely the following:

Theorem 1. Let 𝒙 be a stream of 𝑛-bit twos complement integers
with𝑚 elements. Let𝒚 be the respective sign-magnitude integer repre-
sentation of 𝒙 . If, |𝑥𝑖 | < 2

𝑘 ∀ 𝑖 ∈ [0,𝑚], and 𝑘 < 𝑛, then the activity
of 𝒚 after it is decorrelated is bounded such that 𝑎(𝒚) ≤ 𝑘+1

𝑛 .

Proof. For a sign-magnitude integer, 𝑦𝑖 , if the absolute value is

below a threshold, that is |𝑦𝑖 | < 2
𝑘
, then the popcount is such that∑𝑛

𝑗=0
𝑦𝑖, 𝑗 ≤ 𝑘 +1. If this bound is held for all words in a stream,𝒚 of

sign-magnitude integers, then the activity of the stream is bounded

such that, 𝑎(𝒚) = 1

𝑚 ·𝑛
∑𝑚
𝑖=0

∑𝑛
𝑗=0

𝑦𝑖, 𝑗 ≤ 1

𝑚 ·𝑛
∑𝑚
𝑖=0

(𝑘 +1) ≤ 𝑘+1

𝑛 □

As can be seen, a bound on the absolute of the sign-magnitude

stream guarantees a bound on the activity also. As such, by decreas-

ing the magnitude of each word in the stream, the activity is also
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decreased. This observation leads to the objective of the differential

encoding component.

To begin to tackle this objective, attention is now given to the

machine learning domain. Feature-maps produced by CNN work-

loads exhibit similarity in neighbouring pixels. This similarity leads

to a low absolute difference, as is illustrated in Figure 2b.

(a) Channel-first
streaming.

(b) Similarity in ImageNet
dataset.

Figure 2: Feature maps in CNN accelerators.

In this figure, the distance between the middle pixel and all other

pixels is taken, and averaged across a sample of images from the

Imagenet dataset [14]. Only a single channel of the input feature-

map is shown. This figure highlights the fact that neighbouring

activations of the same channel of a feature-map on average have

a small absolute difference. This property is carried throughout the

CNN, although becomes less prominent deeper into the network,

due to the translational invariance properties of CNNs.

The proposed coding scheme exploits pixel similarity by taking

the difference between an activation and it’s neighbour of the same

channel, as described in Equations (5a) and (5b), for the 𝑖𝑡ℎ word in

the stream:

(diff encoder) 𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−𝑘 (5a)

(diff decoder) 𝑥𝑖 = 𝑥𝑖 + 𝑥𝑖−𝑘 (5b)

where 𝑘 indicates the distance in the stream from the neighbour-

ing activation of the same channel. This value, 𝑘 , depends on the

data-access pattern of the feature-map from the off-chip memory.

For both streaming architectures [1, 20] and single computation en-

gines [3], 𝑘 is chosen to be the number of channels the feature-map

has, as channel-first streaming, which is illustrated in Figure 2a, is

commonly used across accelerators.

Figure 3: Overview of a system utilising DEF.

The complete system for the DEF coding scheme can be seen in

Figure 4 for both the encoder and decoder. This complete coding

scheme is lossless, and requires no additional spatial or temporal

redundancy. The most significant resource overhead is the buffering

needed for the diff encoder/decoder, where 𝑘 words must be stored.

The encoder and decoder can be introduced into a CNN accelerator

as shown in Figure 3. They are placed in the compute pipeline such

that only encoded feature-maps are sent/retrieved to/from DRAM.

(a) DEF encoder

(b) DEF decoder

Figure 4: Block diagrams for DEF coding scheme.

4 EVALUATION
The proposed coding scheme, DEF, is evaluated against existing

state-of-the-art coding schemes. These coding schemes are split

into activity minimisation schemes (ABE, AWR, PBM and BI ) and
compression schemes (Huffman and RLE). Firstly, the impact of all

the coding schemes on switching activity will be evaluated and

compared. The impact on power dissipation of off-chip memory will

then be compared for an FPGA platform. Stimulus for the coding

schemes is generated using the Neural Network Distiller framework

[22]. This framework is used to generate quantised feature-maps

that are of a signed, asymmetric fixed-point integer type. A random

sample of 128 images from the ImageNet dataset [14] are used

as inputs for the quantised networks. A channel-first streaming

order is assumed. The metrics of interest for this evaluation are the

following:

• Transitions Ratio: The ratio of bit transitions ("0" to "1" and

"1" to "0") of the encoded stream to the unencoded stream, as

given in Equation (6). The transitions relate to the dynamic

energy consumed on the bus.

𝒕𝑟𝑎𝑡𝑖𝑜 =
Total Transitions 𝑒𝑛𝑐𝑜𝑑𝑒𝑑

Total Transitions 𝑢𝑛𝑒𝑛𝑐𝑜𝑑𝑒𝑑

(6)

• Average Activity: The average number of transitions on the

bus per word per bus-line, as described in Equation (7). This

metric relates to the average dynamic power consumed by

the bus.

𝒂𝑎𝑣𝑔 =
Total Transitions

Bus Width × Total Words

(7)

4.1 Activity Minimisation Schemes
A comparison is performed between the mentioned activity reduc-

tion schemes for different quantisation levels for the widely used

state-of-the-art network MobileNetv2 [15]. This can be seen in

Figure 5, where a comparison is made for average activity through-

out the MobileNetv2 network. The BI and ABE coding schemes

show lower reduction as the bitwidth is increased, whereas PBM
improves with increased bitwidth, as well as DEF to some extent.

DEF has the lowest activity across most bitwidths (apart from a

bitwidth of 2). This figure covers the typical range of bitwidths,

however 4-bit, 8-bit and 16-bit are the most common throughout

accelerators, and so will be the subject of the rest of the evaluation.
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Encoding
Scheme

𝒕𝑟𝑎𝑡𝑖𝑜 𝒂𝑎𝑣𝑔 Memory (B) Bus Width (bits)

𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16

(unencoded) - - - 0.2897 0.3354 0.3744 0 0 0 4 8 16

ABE 0.9675 1.0028 1.0074 0.2047 0.2832 0.3418 15 31 63 5 9 17

BI 0.8861 0.9155 0.9263 0.1986 0.2671 0.3226 0 0 0 5 9 17

PBM 1.5473 1.1161 0.9245 0.4221 0.3697 0.3499 7 255 131071 4 8 16

AWR 1.3326 1.1350 0.9835 0.2502 0.3012 0.3272 0 0 0 6 10 18

DEF 0.7182 0.7347 0.6571 0.2043 0.2460 0.2504 174 349 699 4 8 16

Table 1: Comparison of metrics and usage of activity minimisation schemes for MobileNetv2.

The activity minimisation schemes are further compared in Table

1 for MobileNetv2. The activity and transitions ratio are compared

alongside memory usage and bus-width. The memory usage indi-

cates the amount of bytes of storage needed for the implementation

of the coding scheme. This table highlights the overheads for each

coding scheme and the impact they have on the activity as well as

on the number of transitions. ABE, BI and AWR2 all require extra
bus-lines in order to propagate coding information across the bus.

It is worth noting that even a single extra bus-line can become

prohibitive for certain platforms due to physical bus-width limits.

The impact of extra bus-lines on transitions can also be seen. Both

ABE and AWR generally increase the number of transitions despite

a reduction in activity, suggesting that the use of extra bus-lines

may have a negative impact on the energy consumed. This table

highlights the improvements DEF brings, where it can be seen to

have the lowest transition ratio and activity. This is achieved with

no extra bus-lines and minimal impact on resource overheads. Com-

pared to PBM, the only other coding scheme which does not require

extra bus-lines, DEF outperforms on both metrics with comparable

or less memory overhead.

Figure 5: Activity for various bus widths. Evaluated on Mo-
bileNetv2.

To gain insight into where the savings are observed within the

CNN, an investigation is made for activity reduction across layers

of MobileNetv2 and the results are reported in Figure 6. This figure

highlights the variance of activity reduction throughout the differ-

ent layers and general trends of the coding schemes. It can be seen

2
The AWR coding scheme is implemented with a window size of 4.

Figure 6: Activity reduction across all layers of MobileNetv2
for bitwidths of 4, 8 and 16.

that all coding schemes have a significant amount of variance at a

bitwidth of 4. DEF generally has significant reduction for the first

few layers, capturing the large pixel similarity observed early on.

There is also an increase in activity reduction towards the end, due

to the large number of zeros observed in later layers, which the

coding scheme is able to exploit.

The activity reduction of the coding schemes is further investi-

gated across seven state-of-the-art CNNs for bitwidths 4, 8 and 16

in Figure 7, where a weighted average is taken across the layers

of each network. It can be seen that the reduction is not uniform

across CNNs for any given coding scheme or bitwidth. The depth

and structure of different CNNs lead to variations in the resulting

activity. It can be seen that DEF achieves the highest reduction

across all networks for bitwidths of 8 and 16, achieving a reduction

between 20% and 50%.

4.2 Compression Schemes
The proposed scheme is also compared against popular compression

schemes within the ML community. The aim of the comparison is to

quantify the extent of impact compression actually has on dynamic

energy consumption, and how this compares to a coding scheme

which only targets activity reduction. The compression schemes

compared are RLE andHuffman. Furthermore, the proposed scheme,

DEF, is also combined with RLE to evaluate the impact of the com-

bination of the two schemes on power and energy reduction.
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Encoding
Scheme

𝒕𝑟𝑎𝑡𝑖𝑜 𝒂𝑎𝑣𝑔 Compression Ratio Memory (B)

𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 4 𝑛 = 8 𝑛 = 16

(unencoded) - - - 0.1928 0.2470 0.2555 1.00 1.00 1.00 0 0 0

DEF 0.6212 0.6162 0.4789 0.1231 0.1564 0.1261 1.00 1.00 1.00 115 231 462

RLE 2.0020 1.4493 1.2900 0.4465 0.3839 0.3667 1.27 1.17 1.24 0 0 0

DEF+RLE 1.0401 0.7927 0.6034 0.2787 0.2170 0.1914 1.42 1.14 1.34 107 215 393

Huffman 1.3077 1.1605 0.9478 0.4509 0.4876 0.4956 2.00 1.97 2.32 17 388 147111

Table 2: Comparison of metrics and usage of compression schemes for GoogleNet.

Figure 7: Activity reduction for various CNNs for bitwidths
of 4, 8 and 16.

An in-depth comparison is performed between the mentioned

approaches using the GoogleNet [19] network, and the results are

presented in Table 2, where the compression ratio is also introduced

as a metric of interest. The results show that compression has an

impact of increasing both activity as well as the number of transi-

tions, as observed in Huffman and RLE approaches. However, by

introducing an activity minimisation scheme into the compression

scheme, activity and transition reduction can be achieved, as shown

by the performance of the DEF+RLE scheme.

Figure 8: Activity reduction for GoogleNet.

To further evaluate the compression schemes and their impact

on activity, a new metric referred to as normalised activity is intro-

duced, and given in Equation (8):

𝒂𝑎𝑣𝑔 =
𝒂𝑎𝑣𝑔

Compression Ratio

(8)

This models the activity of the bus if the compressed stream was

stretched to an uncompressed length. The activity and normalised

activity are compared for the compression schemes as well as DEF
in Figure 8, for the various bitwidths on GoogleNet. In this figure,

the green line represents the baseline activity of the unencoded

stream. The results show that DEF achieves the lowest activity. The

compressed and normalised activity for Huffman vary significantly,

with the normalised activity placing Huffman close to or below

the baseline activity. The combination of RLE and DEF does not

improve on the activity of DEF on it’s own for either compressed

or normalised activity, despite the compression ratio it can achieve.

4.3 FPGA Prototyping
To assess the impact of the proposed coding scheme within a com-

plete CNN accelerator, the power consumption of the memory

subsystem supporting a CNN workload is measured on an FPGA

platform. A Xilinx ZC702 board is used with a design frequency of

200MHz. The power consumption of the VCC1V5 rail that drives the
IO between the FPGA and DRAM as well as the three DRAM chips

themselves is measured. In the experiment, encoded streams are

sent to and from the FPGA, emulating a typical CNN accelerator

design which utilises two of the DRAM chips independently.

Encoding
Scheme

Average
Power (mW)

(unencoded) 1556.2

ABE 1522.9

BI 1509.8

PBM 1546.2

AWR 1549.7

DEF 1458.5

Table 3: Power consumption in MobileNetv2 for activity
minimisation coding schemes on a XC7020.

The power consumption of memory transactions is given for

each activity minimisation scheme in Table 3, when a workload

from MobileNetv2 is used. It is worth noting that the idle power

consumption of the memory sub-system is around 630mW. The

results indicate that DEF is able to reduce the memory subsystem

power by 100mW.
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Figure 9: Relative power reduction for MobileNetv2.

The power reduction of the coding schemes is also compared

in Figure 9. DEF is able to achieve a 6% reduction in power con-

sumption, which is 2× greater than the next comparable coding

scheme, BI. Please note that reduction in reported power compared

to reported activity is lower, as the active power of the DRAM

chips are also taken into account. The coding schemes mostly im-

pact IO power, and their gains are weighted accordingly to their

contribution to the overall active power of the memory subsystem.

The compression coding schemes are also evaluated on the FPGA

platform. Power, energy and execution time are given for the first

layer of AlexNet in Table 4. The table highlights the significance of

the relative power consumption between IO and the DRAM chips, as

although DEF is able to reduce the power to some extent, ultimately

Huffman is able to transfer the feature-mapsmore energy-efficiently

as the DRAM is active for less time.

Encoding
Scheme Power (mW) Time (ms) Energy (𝜇J)

(unencoded) 1534.2 5.519 8466.7

RLE 1526.3 3.833 5849.7

Huffman 1556.8 1.383 2152.9

DEF 1397.7 5.526 7723.8

DEF+RLE 1465.0 2.519 3690.7

Table 4: Power, Execution Time and Energy of compression
schemes for AlexNet on a XC7020.

Finally, the overheads of implementing DEF on a XC7020 FPGA

are evaluated. The maximum resources needed for MobileNetv2 for

8-bit feature-maps are as follows,

FF : 77, LUT : 344, BRAM: 0, DSP : 0

In total, the feature-map with the greatest number of channels

(1280) of MobileNetv2’s workload will still only require less than 1%

of the total board resources. This means that the power overhead

for the implementation will be insignificant also.

5 CONCLUSION
The paper proposed a novel encoding scheme for activity reduction,

tailored to CNN workloads when communication with off-chip

memory is required.The coding scheme is able to achieve up to

50% reduction in activity for feature-maps of CNNs, proving it’s

suitability for this specific domain. The impact of activity reduction

is demonstrated on an FPGA platform, and the coding scheme is

able to reduce the power consumption of a memory subsystem by

6%, with minimal overhead.
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