
POMMEL: Exploring Off-Chip Memory Energy &
Power Consumption in Convolutional Neural

Network Accelerators
Alexander Montgomerie-Corcoran, Christos-Savvas Bouganis

Dept. of Electrical and Electronic Engineering, Imperial College London, UK
{alexander.montgomerie-corcoran15, christos-savvas.bouganis}@imperial.ac.uk

Abstract—Reducing the power and energy consumption of
Convolutional Neural Network (CNN) Accelerators is becoming
an increasingly popular design objective for both cloud and
edge-based settings. Aiming towards the design of more efficient
accelerator systems, the accelerator architect must understand
how different design choices impact both power and energy
consumption. The purpose of this work is to enable CNN accel-
erator designers to explore how design choices affect the memory
subsystem in particular, which is a significant contributing
component. By considering high-level design parameters of CNN
accelerators that affect the memory subsystem, the proposed tool
returns power and energy consumption estimates for a range of
networks and memory types. This allows for power and energy of
the off-chip memory subsystem to be considered earlier within the
design process, enabling greater optimisations at the beginning
phases. Towards this, the paper introduces POMMEL, an off-
chip memory subsystem modelling tool for CNN accelerators,
and its evaluation across a range of accelerators, networks,
and memory types is performed. Furthermore, using POMMEL,
the impact of various state-of-the-art compression and activity
reduction schemes on the power and energy consumption of
current accelerations is also investigated.

Index Terms—Convolutional Neural Networks, Power Mod-
elling, Machine Learning Acceleration.

I. INTRODUCTION

The increasing demand for CNN solutions for a range of
applications has brought forth challenges for the hardware they
are being deployed on. With greater numbers of parameters
and operations for state-of-the-art CNN models, there is an
increased demand for computational power and subsequently,
demand for energy and power. This demand for energy and
power has an impact on edge-based platforms, where there
are strict constraints on both due to the limited resources.
Moreover for data-center settings, power-efficient hardware
is becoming increasingly more desirable in order to reduce
running costs and environmental impact. This has lead to
the development of CNN-specific accelerators, which aim to
meet the performance demands for various applications and
systems, offering advances on the energy and power efficiency
of traditional compute platforms such as CPUs and GPUs.

However, despite improvements made to efficiency by the
accelerator chips, the off-chip memory component of these
CNN accelerator systems still has a significant impact on total
power consumption. Off-chip memory access is a requirement
for nearly all accelerators, despite recent trends of trying to

reduce off-chip memory accesses by keeping more data on-
chip. Off-chip memory access is driven by the large memory
requirements of modern CNN models, with networks such as
EfficientNet-v2 [1] requiring over 60MB to store parameters
alone. The problem is further amplified as off-chip memory
can have a significant impact on overall power and energy
consumption, often outweighing that of the accelerator itself.
For example, the fpgaConvNet accelerator has shown that off-
chip memory power can contribute 50% of the total system
power [2]. As the off-chip memory subsystem is significant in
terms of power and energy consumption, its utilisation must
be understood in order to improve the efficiency of the entire
system.

Towards reducing power and energy consumption of the off-
chip memory in a CNN accelerator system, compression and
activity reduction schemes for off-chip memory transactions
are employed increasingly often. Compression schemes have
the ability to reduce time spent utilising the memory bus and
DRAM chips, whilst activity reduction schemes impact the
dynamic power consumed on the memory bus. However, the
effectiveness of such schemes varies across memory types,
accelerators, and networks. To choose an optimal scheme
or inform the design of improved coding schemes, a better
understanding is needed of the features of accelerators and
memory types, relating to power and energy.

In this work, an open-source tool, POMMEL1, is proposed
for investigating power and energy consumption for CNN
accelerator systems. This tool is used to undertake an in-
vestigation into the properties of CNN accelerators and how
this affects power consumption for different memory types.
Further to this, the impact of popular compression and activity
coding schemes on power and energy consumption is also
investigated.

The background of this work is covered in Section II,
related work is discussed in Section III and an overview of the
power modelling tool is given in Section IV. Then common
memory types are evaluated in Section V, the accuracy of the
tool is evaluated in Section VI, CNN accelerator systems are
evaluated in Section VII and finally the impact of different
coding schemes are evaluated in Section VIII. The paper is
concluded in Section IX.

1https://github.com/AlexMontgomerie/pommel

II. BACKGROUND

CNN Accelerators are used to accelerate the inference of
CNN models. Many different CNN Accelerator architectures
have been proposed [3]–[7] to address different accelerator
settings and requirements. CNN accelerators typically fall into
two categories: streaming architectures and systolic arrays,
with the latter being much more popular due to their flexibility.
Systolic array accelerators can generally be categorised by the
type of dataflow they employ [8], which relates to data reuse
within the processing engines of the array. These accelerator
systems typically come in the form of an Application Specific
Integrated Circuit (ASIC) or Field Programmable Gate Array
(FPGA) platform that accelerates the convolution layers within
CNN models, as well as external DRAM in order to store
the large feature-maps and weights that cannot fit into the
accelerator’s on-chip memory.

The two main components of the memory subsystem
are the IO components [9], such as chip interconnects and
IO interfaces, and the DRAM chips themselves [10], [11].
Considering the IO power, there are four main sources of
power consumption: IO dynamic power, termination power,
interconnect power and PHY power [9]. IO dynamic power
is dissipated across load capacitances for the IO interface.
Termination power is the power consumed by the on-chip
terminations. Interconnect power is dissipated across the off-
chip interconnects. PHY power summarises the background
power consumed by the IO peripherals. The main parameters
that affect the IO power components for a given memory
system is the bandwidth utilisation of the memory bus as well
as the activity along the address and data lines. DRAM power
consumption captures the power consumed by cells within
DRAM chip. The memory commands (ACT, PRE, READ,
WRITE) sent to memory have different energy profiles and
more frequently commands are sent to the device, the greater
the power that is consumed.

Compression schemes have been employed to reduce mem-
ory subsystem power consumption of feature-map transfers in
several CNN Accelerators [3], [12], [13]. These compression
schemes mostly exploit the sparsity in CNN feature-maps
by employing methods such as Run Length Encoding (RLE)
and Compressed Sparse Row (CSR) representation. Further to
feature-map compression, weights compression has also been
explored for CNN Accelerators [12]. In particular, Huffman
Coding is commonly used to reduce on-chip memory usage.

Activity reduction techniques have also been explored in
the design of CNN Accelerators. In activity reduction coding
schemes, the objective is to reduce the average number of
transitions along a bus, which reduces the dynamic power
consumed. For a memory bus, address and data lines have
the largest impact on dynamic power and so are typically the
focus for activity reduction schemes. More general activity
reduction schemes have been proposed such as Bus-Invert (BI)
[14] and Probability Based Mapping (PBM) [15]. There is also
the Differential Encoding of Feature-maps (DEF) [16] coding
scheme which reduces activity for CNN applications.

III. RELATED WORK

The impact of off-chip memory power has been targeted in
recent works, and many CNN accelerator works acknowledge
the impact of off-chip memory power on their system [12],
[17]. The EYERISS accelerator paper [17] in particular has
an evaluation of energy for DRAM accesses, for different
dataflow types, however this investigation is done for a specific
memory subsystem. Other works have explored modelling the
power consumption of off-chip memory within the accelerator
system, with opportunities for design space exploration [2],
[18]. All of these works consider the memory subsystem as
fixed, with few opportunities to optimise for off-chip memory
power and energy explicitly.

A number of works model memory power consumption
[9]–[11], [19], with the purpose to improve on vendor power
estimation models, and allow for a high-level investigation of
off-chip memory power consumption. The DRAMPower [10]
tool focuses on improving the power estimation of DRAM
chips themselves through more detailed power models of the
DRAM chip. The VAMPIRE [11] tool takes into account
variations in DRAM chips to produce a more accurate model
based on empirical results. These previous tools focus on
power consumption from the DRAM chips perspective without
considering the interfacing power, which is a significant aspect
of the memory subsystem. The CACTIO-IO [9] modelling tool
focuses on this aspect, providing general models of IO power
for different memory types and configurations. In this work,
the CACTI-IO [9] and the DRAMPower [10] power modelling
tools are utilised in order to model IO and DRAM power
respectively.

The purpose of this work is to extend the use of power
modelling tools for the memory subsystem and build on
the insights of previous accelerator works. By modelling the
memory transactions of given accelerator and network pairs
and gathering power readings through existing power mod-
elling tools, this work enables CNN accelerator designers to
rapidly evaluate their memory subsystem power consumption
and enable informed decisions on the overall design of the
architecture.

IV. POWER MODELLING TOOL

In order to evaluate the power consumption of the memory
subsystem in CNN accelerator platforms from a high-level
description, as well as the impact of various compression and
coding schemes, a power modelling framework needs to be in
place. This section details the design of this tool, which we
have coined POMMEL. The tool performs off-chip memory
power estimation of each partition (i.e. computational stage) in
the CNN accelerator’s execution by creating a memory access
trace for the given accelerator description and performing
power estimation on this trace. The tool focuses on the feature-
map access as it dominates in terms of the utilisation of the
memory bus, due to the computational bottlenecks as well
as the large size of feature-maps that are usually 100x larger
than the weights in a layer, such as in ResNet [20], VGG [21],
AlexNet [22] and MobileNet-v2 [23].

Fig. 1: The POMMEL memory power modelling tool-flow. This represents the flow for each partition for the CNN accelerator’s
execution of a network.

The tool accepts three configuration files, which are de-
scribed in Table I. The accelerator configuration file describes
the key parameters with regards to the memory subsystem.
Within it, the feature-map layout describes how the feature-
map words occur in memory (row-major or channel-major).
The burst-size refers to the memory access burst by the DMA
on the accelerator. The memory configuration file follows the
same specification as is in the DRAMPower tool [10], as
the power model parameters are specified in this file. The
network configuration file specifies the feature-maps as well
as the bandwidth for each partition executed on the device. A
partition refers to what part of the CNN computation graph
is being executed on the accelerator at a time. Systolic array
architectures typically execute a single convolution layer in
each partition. These network descriptions can be hand-written
or generated from SCALE-Sim [24].

Configuration File Parameters

Accelerator

Word-length
Burst Size
Clock Frequency
Featuremap Layout

Memory

Type
Number of Chips
Ranks
Banks
Rows
Columns
Data Width

Network
(per partition)

Bandwidth
Featuremap Path

TABLE I: Parameters for different configuration files in the
POMMEL modelling tool.

In addition to the configuration files, sample feature-maps
are also taken into account. These are specified in a feature-
maps file which contains a sample of the input and output of
each layer in its respective network for a sample of relevant
inputs. The tool utilises the Neural Network Distiller Tool
[25] to create quantised feature-maps from the ImageNet [22]
dataset. Optionally, an encoding scheme configuration file can
be specified. This file contains relevant parameters for each
feature-map in the network.

An overview of the toolflow is shown in Figure 1. In
this figure, the dashed boxes represent the user configuration
files that were previously outlined, the white solid-line boxes
represent components of the tool-flow, and the grey boxes

represent external tools utilised in this framework. The tool
takes as an input the feature-maps file. It iterates over each
partition in the network emulating the execution of the CNN
model on the given accelerator.

feature-map transform: The first stage transforms the
feature-map to represent the contents of off-chip memory. This
manipulates the out-of-order feature-map into a list of address
and data pairs. The words of the feature-map are packed into a
memory-bus width word. Then they are organised into a row or
channel major format based on the accelerator configuration.

encoder: There is an optional stage next to encode the
transformed feature-maps. Based on a encoder configuration,
the transformed feature-maps are further manipulated by the
specified compression or activity reduction scheme. These
encoders affect the data as well as the addresses.

trace generation: Having transformed the feature-maps to
represent off-chip memory content, the next step is to generate
the traces that represent the memory accesses. Using the
utilised bandwidth described in the network configuration
file as well as the burst size for data accesses, the memory
addresses are then transformed into memory commands. This
stage utilises the RAMULATOR tool [26] to help generate
accurate commands for the trace.

stats: From the generated memory access trace, metrics are
then extracted to be used by the power estimation tools. In
particular, the CACTI-IO tool requires the average switching
activity as well as the average utilised bandwidth across the
memory bus, for both reading and writing.

config generation: The final stage of the tool is to generate
the configuration files needed by the DRAM and IO modelling
tools. This stage takes information from the POMMEL mem-
ory configuration file alongside the metrics generated from
the previous stage to modify the DRAMPower and CACTI-IO
configuration files. This then allows these tools to be executed
in order to get the DRAM and IO power estimations.

Type Data
Width

Clock
Freq.

(MHz)

Bandwidth
(GB/s)

DDR3 32 1332 5.3
DDR3L 32 1066 4.3
DDR4 32 1866 7.5

LP-DDR2 64 1066 8.5
LP-DDR3 32 1600 6.4

TABLE II: Memory configurations.

V. EVALUATION OF MEMORY TYPES

Having established a tool for modelling off-chip memory
power/energy consumption, in this section the POMMEL tool
will be used to evaluate different memory types that are
commonly used for CNN accelerators, and explores their
properties. Throughout the evaluation sections, we will refer to
different memory configurations based on the type of memory.
These different memory configurations are summarised in Ta-
ble II. All the memory configurations share the same capacity
of 1GB. This capacity is sufficient for this investigation, as
the largest network (VGG11 [21]) requires less than 318 MB
of storage for both parameters and feature-maps.

The first investigation that is performed is exploring how
the choice in type of memory affects power consumption.
To do this, two metrics are extracted from the established
power modelling tools which show how power varies with both
bandwidth and activity. For off-chip memory systems, these
are the two main variables that affect power consumption.
The static power constant is extracted also. These metrics are
derived using the model given in Equation 1:

Ptotal = Pstatic + kbw · b+ kact · a · b (1)

where Ptotal is the total memory subsystem power in
mW, Pstatic is the static power component in mW, b is the
bandwidth utilised by the memory bus in gigabytes per second
(GB/s), a is the activity of the words sent along the data-lines
of the memory bus in average transitions per bit (T

b) where
T is average transitions and b is bit, kbw is the bandwidth
coefficient in GB/s/mW, and kact is the activity coefficient in
GT/s/mW. The activity for the data is calculated out of context
of the actual rate at which they are sent and thus needs to
be scaled by the bandwidth utilised on the memory bus. It
is also worth noting that the activity for address lines is not
taken into account, as CNN Accelerators usually access data
from sequential addresses, and so this parameter is typically
constant across all accelerators. The coefficients for this model
are derived using linear regression for a uniform set of power
predictions generated by the modelling tool. Coefficients for
the various memory types are presented in Table III.

DRAM
Type

Static
Power
(mW)

Bandwidth
Coefficient
(GB/s/mW)

Activity
Coefficient
(GT/s/mW)

DDR3 768.4 253.7 5.3
DDR3L 268.0 230.7 4.5
DDR4 151.7 171.5 3.1

LP-DDR2 288.5 142.9 20.3
LP-DDR3 157.4 144.1 13.7

TABLE III: Static power and bandwidth and activity coeffi-
cients for different memory types.

The results show that the memory types exhibit different
properties when it comes to bandwidth and activity. Compar-
ing the values for the coefficients themselves, bandwidth has
a much more significant impact on power than activity. And
out of the memory types, both DDR3 and DDR3L are the
most sensitive to changes in bandwidth compared to the other

configurations. In terms of sensitivity to activity, both LP-
DDR2 and LP-DDR3 are the most sensitive, suggesting that
IO dynamic power can have a significant power contribution
for these memory types compared to other memories. DDR3
has the largest static power term by far, suggesting that any
optimisations on activity and bandwidth will proportionally
have less of an effect on power consumption. DDR4 and LP-
DDR3 have the lowest static power values, making them ideal
for computationally-bounded accelerator systems where static
power dominates due to the low memory bandwidth utilisation.

VI. EVALUATION OF POWER MODELLING ACCURACY

It should be noted that these power estimations are derived
from existing power modelling tools. To evaluate the actual ac-
curacy of these modelling tools, an investigation is undertaken
to compare actual readings against the model predictions. A
number of readings are taken for a DDR3-based memory
system (part MT41J256M8HX-15E) on the ZC702 Xilinx
FPGA development board.

Fig. 2: Comparison between model and actual readings for
memory power consumption across different bandwidths. Data
activity of both 0.1 and 0.9 are compared.

The comparison of the model predictions and actual read-
ings are presented in Figure 2. In this figure, the model
predictions and actual readings for the total memory power
consumption are compared for varying bandwidth usage, for
low (0.1) and high (0.9) data activity values. The results
show that the model assumes a larger static power than
what is actually measured, at around 150 mW. Moreover,
the actual memory power readings are more sensitive to
bandwidth changes compared to the model prediction (seen
by the steeper gradient). Nevertheless, the model predictions
and actual readings have a similar trend.

Table IV presents the coefficients generated from the mem-
ory power model in Equation 1 for the power predictions
and actual readings. The actual memory system consumes
140mW more power per GB/s increase in utilised bandwidth
and 170mW greater static power. Both the model and actual
readings demonstrate similar sensitivity with respect to the

DRAM
Type

Static
Power
(mW)

Bandwidth
Coefficient
(GB/s/mW)

Activity
Coefficient
(GT/s/mW)

model 768.4 249.0 5.3
actual 594.0 390.5 5.3

TABLE IV: Comparison of static power and bandwidth and
activity coefficients for modelled and actual readings of a
MT41J256M8HX-15E DDR3 based memory system.

activity, shown by the activity coefficient. In conclusion, even
though these power modelling tools exhibit a bias in the power
estimation, the uncertainty in their predictions is low, making
them valuable for design space exploration.

VII. EVALUATION OF CNN ACCELERATOR SYSTEMS

In this section, the investigation focuses on the power
and energy consumption of state-of-the-art CNN accelerators
when combined with a specific off-chip memory type. This
work utilises the SCALE-SIM tool [24] to generate layer-
wise memory bandwidth usage estimations for the accelerators
under investigation. We generate configuration files to emulate
the behaviour of three research accelerators: ShiDianNao [5],
EYERISS [3] and SCNN [27], as well as for a commercial
accelerator, the Tensor Processing Unit (TPU) [7], using the
SCALE-SIM tool. A batch size of 8 is used across all accel-
erators. The AlexNet [22], ResNet-18 [20], VGG11 [21], and
MobileNet-v2 [23] networks have been used as case studies.
Table V shows the type of dataflow and wordlength used
across these systems, as well as the required memory band-
width and measured activity for the execution of ResNet18
[20].

Accelerator Wordlength Dataflow Performance
(GOP/s)

Avg.
Activity

(T/b)
ShiDianNao 16 OS 1.22 0.26

EYERISS 16 RS 2.62 0.30
SCNN 16 IS 3.19 0.39
TPU 8 OS 51.22 0.22

TABLE V: Properties of the various accelerators for the
ResNet18 [20] CNN model.

As the available bandwidth and performance for the TPU
configuration is considerably higher compared to the research
devices, a separate elaboration on the TPU will follow. Using
the proposed tool, the power and energy consumption across
the research accelerators for various memory types is shown
in Figure 3. The figure illustrates variations in average power
and energy consumption across the memory types for each
accelerator architecture. The results show that the accelerators
have similar power consumption profiles, however due to their
differences in performance, the lower performance accelerators
consume more energy in total. The strong similarity in power
consumption profiles is due to the low bandwidth requirements
of these smaller research accelerators, meaning that static
power consumption dominates in all cases. Furthermore, the
obtained results show that both DDR4 and LP-DDR3 have

Fig. 3: Comparison of power and energy for different acceler-
ators and memory types for the ResNet18 [20] CNN model.

Fig. 4: Comparison of IO and DRAM power for different
memory types for a TPU accelerator configuration running
the MobileNet-v2 [23] CNN model.

the lowest power and energy consumption across all the
accelerators.

Figure 4 illustrates the IO and DRAM power as a function
of the partition of the computation for the TPU configuration,
when the accelerator is combined with different memory types.
The results show that DRAM power and IO power vary
across partition indices and memory types. For LP-DDR3
and LP-DDR2, the IO power dominates in the earlier layers

Fig. 5: Comparison of impact of different coding schemes for a TPU accelerator configuration for different networks and
memory types.

and reduces further down the network. DDR3 is dominated
by static IO power towards the later partition indices in the
network. Spikes in power consumption can be observed across
the partitions, which is due to the types of layer and whether
they are bounded by memory or computation bandwidth. The
results highlight the significance of this tool as it provides
detailed power consumption per partition, allowing for fine-
grain optimisation of power consumption in CNN accelerators.

VIII. IMPACT OF COMPRESSION AND ACTIVITY
REDUCTION SCHEMES

A popular method for reducing memory power consumption
in existing accelerators is to employ compression and activity
reduction schemes. This section investigates the impact of
compression and coding schemes mentioned in Section II.
In particular, the coding schemes Bus-Invert (BI), Huffman,
Run-Length Encoding (RLE) and Differential Encoding of
Featuremaps (DEF) are investigated. Results with no coding
scheme applied are referred to as baseline results. It should be
noted that these compression and coding schemes only have a
noticeable impact on high-performance accelerators due to the
large static power that exists in memory power consumption.
We will therefore focus on the TPU accelerator configuration
due to its high performance.

Figure 5 illustrates the power and energy impact of various
coding schemes and memory pairs for a TPU accelerator
configuration running AlexNet [22], VGG11, and ResNet18.
The results show that despite the high performance of the
TPU accelerator configuration, that only modest energy and
power savings (14% energy savings at most) can be achieved
by employing these compression and coding schemes. Out
of all the schemes, the compression schemes (Huffman and
RLE) provide the best reduction in power. These results are
in agreement with the model coefficients seen in Table III,
where we see that all the accelerators have a greater sensitivity
to bandwidth reduction than activity reduction. Moreover, the

reductions in power do not necessarily lead to reductions in
energy, and in fact for AlexNet [22], the system’s energy con-
sumption using the Huffman compression scheme is increased
despite the slight reduction in average power.

Fig. 6: Partition-level analysis of power and energy for a
TPU accelerator configuration for the VGG11 [21] network for
different coding schemes. The left axis represents the values
for the line plots and the right axis for the bar plots.

Figure 6 provides a partition-level analysis on the impact
of the above schemes in power and energy reduction. The
results show that Huffman and RLE lead to reductions in
power particularly around the early partition indices, where
the accelerator exhibits high memory bandwidth. Towards the
later partitions, these differences are less prominent due to the
low bandwidth requirements. This also leads to the accelerator

spending more time in those later partitions, and therefore to
consume more energy as opposed to earlier layers.

The above analysis demonstrates that the evaluated activity
reduction schemes have minimal impact on the power and
energy consumption of the system, whereas the compression
schemes have a greater impact on the power and energy
reduction as they reduce bandwidth utilisation. Moreover,
optimisation on layers where the accelerator spends a higher
proportion of its execution time has a larger impact on energy
reduction, whereas layers with high bandwidth requirements
have more potential for power reduction.

IX. CONCLUSION

This paper presents the POMMEL off-chip memory power
modelling tool for CNN accelerators, which enables CNN
accelerator designers to bring off-chip memory power and
energy consumption earlier into the design process. The tool
integrates a number of widely reputed tools for off-chip
power modelling, and its accuracy is evaluated using real-
world benchmarks. Using POMMEL, the paper investigates
the impact of power and energy consumption of state-of-the-
art CNN accelerators for various off-chip memory types as
well as power reduction approaches, and draws conclusions
on their potential.

REFERENCES

[1] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-Training With
Noisy Student Improves ImageNet Classification,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10 687–10 698.

[2] A. Montgomerie-Corcoran, S. I. Venieris, and C. Bouganis, “Power-
Aware FPGA Mapping of Convolutional Neural Networks,” in 2019
International Conference on Field-Programmable Technology (ICFPT),
Dec. 2019, pp. 327–330.

[3] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA), Jun. 2016, pp. 367–379.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: Association for
Computing Machinery, Feb. 2014, pp. 269–284.

[5] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), Jun. 2015, pp. 92–104.

[6] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Toolflow for Map-
ping Diverse Convolutional Neural Networks on Embedded FPGAs,” in
NIPS 2017 Workshop on Machine Learning on the Phone and Other
Consumer Devices, 2017.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a

tensor processing unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2017, pp. 1–12.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.

[9] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “CACTI-
IO: CACTI With OFF-Chip Power-Area-Timing Models,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7,
pp. 1254–1267, Jul. 2015.

[10] K. Chandrasekar, B. Akesson, and K. Goossens, “Improved Power
Modeling of DDR SDRAMs,” in 2011 14th Euromicro Conference on
Digital System Design, Aug. 2011, pp. 99–108.

[11] S. Ghose, A. G. Yaglikçi, R. Gupta, D. Lee, K. Kudrolli, W. X. Liu,
H. Hassan, K. K. Chang, N. Chatterjee, A. Agrawal, M. O’Connor, and
O. Mutlu, “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 2, no. 3, pp.
1–41, Dec. 2018.

[12] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An Updated Survey of Efficient Hardware Architectures
for Accelerating Deep Convolutional Neural Networks,” Future Internet,
vol. 12, no. 7, p. 113, Jul. 2020.

[13] J. J. Zhang, P. Raj, S. Zarar, A. Ambardekar, and S. Garg, “CompAct:
On-chip Compression of Activations for Low Power Systolic Array
Based CNN Acceleration,” ACM Transactions on Embedded Computing
Systems, vol. 18, no. 5s, pp. 47:1–47:24, Oct. 2019.

[14] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 3, no. 1, pp. 49–58, Mar. 1995.

[15] S. Ramprasad, N. Shanbhag, and I. Hajj, “A coding framework for low-
power address and data busses,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 7, no. 2, pp. 212–221, Jun. 1999.

[16] A. Montgomerie-Corcoran and C. Bouganis, “DEF: Differential En-
coding of Featuremaps for Low Power Convolutional Neural Network
Accelerators,” in 2021 26th Asia and South Pacific Design Automation
Conference (ASP-DAC). ACM, 2021.

[17] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, 2017.

[18] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “NeuralPower:
Predict and Deploy Energy-Efficient Convolutional Neural Networks,”
in Asian Conference on Machine Learning. PMLR, Nov. 2017, pp.
622–637.

[19] J. Lucas and B. Juurlink, “MEMPower: Data-Aware GPU Memory
Power Model,” in Architecture of Computing Systems – ARCS 2019,
M. Schoeberl, C. Hochberger, S. Uhrig, J. Brehm, and T. Pionteck, Eds.
Cham: Springer International Publishing, 2019, vol. 11479, pp. 195–207.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 770–778.

[21] K. Simonyan, “Very Deep Convolutional Networks for Large-Scale
Image Recognition.” in International Conference on Learning Repre-
sentations, 2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[24] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN Accelerator Simulator,” arXiv:1811.02883
[cs], Feb. 2019.

[25] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural
Network Distiller: A Python Package For DNN Compression Research,”
arXiv:1910.12232 [cs, stat], Oct. 2019.

[26] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, Jan. 2016.

[27] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), Jun. 2017, pp. 27–40.

