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Motivation

What is the motivation for this work?

Ability to understand the impact of memory power consumption early on in

the design process

Rapidly evaluate the power consumption of any given CNN accelerator, 

memory or network

Explore the impact of coding schemes on the power consumption
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Contribution

What does POMMEL do?

This tool estimates memory subsystem power consumption for a 

given memory type, accelerator and network

What do I need to run the tool?

Only requires three high-level configuration files to run

Can I use the tool?

It has been open-sourced on github

What does the tool produce?

Produces a report with a breakdown of power consumption for 

the memory subsystem
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Background

• Convolutional Neural Network Accelerators

• CNN Accelerator Memory Subsystem

• Power Consumption in DRAM
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Background: CNN Accelerators

• Systolic Arrays (SA) are the most common type of 

accelerator architecture:

• TPU [1]

• EYERISS [2]

What does a CNN accelerator do?

Accelerates the convolution layers in CNN models

• Processing Element (PE) performs MAC operations for 

computing kernel dot products

• SA accelerators have three main on-chip SRAM buffers:

• IFMAP: input feature-map

• WEIGHTS: convolution parameters

• OFMAP: output feature-map
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Background: Memory Subsystem in CNN Accelerators

What is the memory subsystem?

Off-chip memory used to store feature-maps and weights

Feature-maps are typically 100x larger than weights, and experience 

computational bottlenecks
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Background: IO Power of the Memory Subsystem

IO Power Components

IO Dynamic Power Power consumed by load capacitances 

Termination Power Power consumed within the IO terminations

Interconnect Power Power dissipated along the DRAM to accelerator bus 

PHY Power Power from other components present in the memory subsystem

Contains both Static and Dynamic power that vary based on bandwidth and activity

6



intelligent Digital Systems Lab

Background: DRAM Power of the Memory Subsystem

• Power consumed by cells within the DRAM chip

• Different commands (ACT, PRE, READ, WRITE) consume different amounts of 

energy

• More power consumed when actively reading and writing than when idle

• (Mostly) consumes static power 

From What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study [3]  
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POMMEL Framework

Inputs:

• Feature-map file

• Configuration files:

• Accelerator 

• Network 

• Memory

Outputs:

• IO Power

• DRAM Power
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POMMEL Framework: Feature-map Transform

Accelerator Configuration:

• Word-Length

• Burst Size

• Clock Frequency

• Memory Layout

Data-Packing: packing together the 

quantized words to fully utilize the 

memory bus.

Memory Layout: How the feature-maps 

are laid out in memory (i.e. channel-first)
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POMMEL Framework: Encoding (Optional)

Compression Schemes:

• Huffman

• Run Length Encoding

Activity Reduction Schemes:

• Bus-Invert

• Differential Encoding of Featuremaps [8]

Ability to add custom encoders
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POMMEL Framework: Trace Generation

Network Configuration:

• Bandwidth in

• Bandwidth out

• Feature-map in

• Feature-map out

• Generates equivalent trace for the 

accelerator

• Uses real data to calculate impact of 

data and address activity

• Uses Ramulator [10] for trace generation

• Either use board readings or SCALE-

Sim [11] estimates
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POMMEL Framework: Power Estimation

Memory Configuration:

• Type

• Number of chips

• Ranks

• Banks

• Rows

• Columns

• Data width

• Generates configurations for power estimation tools

• Uses trace files as well as bandwidth and activity statistics

• CACTI-IO [9]: memory interface

• DRAMPower [3]: DRAM cells
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Evaluation

• Accuracy of the tool

• Characteristics of different memory types

• Accelerator Investigation

• Encoder Investigation
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Evaluation: Accuracy of the Tool

DDR3
Static 

Power

Bandwidth 

Coefficient

Activity 

Coefficient

Model 768.4 249.0 5.3

Actual 594.0 390.5 5.3

• Similar bandwidth and 

activity coefficients

• Static power is much

lower in reality

Fig. 1: Comparison of estimated and actual power 

readings for DDR3 memory

Tab. 2: Comparison of estimated and actual static 

power and bandwidth and activity coefficients
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Evaluation: Power Coefficients of Memory Types

DRAM 

Type

Static Power 

(mW)

Bandwidth Coefficient 

(GB/s/mW)

Activity Coefficient 

(GT/s/mW)

DDR3 768.4 253.7 5.3

DDR3L 268.0 230.7 4.5

DDR4 151.7 171.5 3.1

LP-DDR2 288.5 142.9 20.3

LP-DDR3 157.3 144.1 13.7

Tab. 1: Comparison of estimated static power and bandwidth and activity coefficients for 

different types of memory

What are the characteristics for different types of memory? 
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Evaluation: Accelerator Power Comparison

Findings:

• Investigation for EYERISS [1],SCNN [4]

and ShiDianNao [5] Accelerators (using 

SCALE-SIM [11])

• Shows dominance of static power in

all systems

• Performance has a significant impact on 

total energy

Fig. 2: Comparison of Energy and Power for different research 

accelerators and different memories running ResNet18 [6]
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Evaluation: Comparison of Coding Schemes

Findings:

• Huffman and RLE have the most impact 

on power and energy

• Activity reduction schemes have no 

noticeable impact on power and energy

• Power reduction is only realised in high-

bandwidth layers of the network

• Low-bandwidth layers typically have the 

largest impact on total energy usage

Fig. 3: Comparison of Energy, Power, Bandwidth and Latency 

per layer for different coding schemes on a TPU-like 

accelerator running VGG11 [7] on DDR4
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Conclusion

• Presented a new open-source tool for evaluating the memory power 

consumption for CNN accelerator systems

• It can evaluate power for a given network, accelerator and type of 

memory

• The accuracy of the tool is shown to be acceptable

• It can be used to investigate power optimization techniques at a high 

level

Thank you for listening!

AlexMontgomerie/pommel am9215@ic.ac.uk
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