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Enabling power-aware design space exploration by exposing power

consumption within a CNN-to-FPGA mapping framework. The main

results are:

• 93.4% accuracy for power consumption of LeNet across design

points on the zynq ZC7020 chip.

• 20.1% power reduction for purely throughput-driven designs of

AlexNet for the zynq ZC7045 chip.

Tool Eval. Time Error (%)

XPE < 1 second 624.37

Vivado > 30 minutes 559.86

Vivado (saif) > 1 hour 5.01

Proposed Solution < 1 second 21.50

Design Space Exploration

Table 1: Comparison of Power Modelling Tools

Figure 2) Measured and predicted power for the 1st layer of AlexNet.

Figure 3) DSE with a throughput objective for AlexNet on ZC706.

Power Consumption Modelling
Despite the extensive existing efforts in power consumption modelling,

there is still a gap between accuracy and estimation speed when targeting

CNN accelerators on FPGAs. To this end, a novel power modelling

methodology is proposed tailored to FPGA-based CNN systems. Our

method overcomes the limitations of existing tools and combines high

accuracy with fast estimation by exploiting two key observations:

1. strong statistical patterns in the feature maps

2. parametrisation of commonly used CNN hardware modules.

To use a model to guide design space exploration, the model must

account for the most significant sources of power consumption. As such,

the following components are identified as the most significant:

• Dynamic Power (of PL)

• Static Power (of PL)

• Memory-Interfacing Power (from PL to DDR)

. With a power-modelling methodology in place, power-driven designs can

be explored. Within the embedded space, power is a crucial aspect, and

characterising and limiting power consumption can play a key role to the

configuration of the final design.

The power model is incorporated within a DSE technique (Simulated

Annealing). Throughput-driven DSE is shown in Fig. 3 alongside power

consumption. A clear pareto-optimal front can be seen between

throughput and power-consumption, highlighted by the red line. By adding

power consumption as a constraint, the model is able to find power-

efficient designs.

Conclusion
This work brings power consumption to the forefront of the fgpaConvNet 1

framework, and promotes methods which can be used across other

frameworks. In this way, low-power implementations of CNNs will be

realisable for a host of platforms with harsh power constraints.

The power model in this work is derived for the fpgaConvNet 1 framework,

which performs DSE on modules. A linear model is derived for these

modules using information about the operations they are comprised of as

well as the signal activity into these modules. This is illustrated in Fig. 1

where all the parametrized operations are given as well as the related

performance models for them.

Figure 1) Diagram of a Convolution module.

The accuracy of the model is evaluated in Fig. 2 for the first layer of

AlexNet. The different design points represent varying throughput

objectives. The power model is able to stay below an error of 13% at

most. This diagram also highlights the existence of power-efficient design

points as well the models effectiveness in exposing them.

Another important aspect to the power model for use in DSE is the

evaluation time. Having described power consumption through a small set

of parameters, the model is able to be evaluated quickly. From Table 1,

the power model shows competitive accuracy with very fast evaluation

time.
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